On the Transfer of Distributions: Weighted Orbital Integrals

نویسنده

  • James Arthur
چکیده

0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 1. Multiple groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 2. K-groups and transfer factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 3. The conjectural transfer identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 4. A generalization of weighted orbital integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 5. The corresponding endoscopic construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 6. Stable splitting formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 7. Stable descent formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 8. Local vanishing theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 9. Toward a stable local trace formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 10. A simple application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The characters of supercuspidal representations as weighted orbital integrals

Weighted orbital integrals are the terms which occur on the geometric side of the trace formula. We shall investigate these distributions on a p-adic group. We shall evaluate the weighted orbital integral of a supercuspidal matrix coefficient as a multiple of the corresponding character.

متن کامل

Asymptotic and descent formulas for weighted orbital integrals

We rewrite Arthur’s asymptotic formula for weighted orbital integrals on real groups with the aid of a residue calculus and extend the resulting formula to the Schwartz space. Then we extract the available information about the coefficients in the decomposition of the Fourier transforms of Arthur’s invariant distributions IM (γ) in terms of standard solutions of the pertinent holonomic system o...

متن کامل

The Local Behaviour of Weighted Orbital Integrals

are obtained by integrating f with respect to the invariant measure on the conjugacy class of y. They are of considerable importance for the harmonic analysis of G(F). Invariant orbital integrals are also of interest because they occur on the geometric side of the trace formula, in the case of compact quotient. For the general trace formula, the analogous terms are weighted orbital integrals [3...

متن کامل

Thrust - Limited Optimal Three - Dimensional Spacecraft Trajectories

Several optimal three-dimensional orbital transfer problems are solved for thrust-limited spacecrafts using collocation and nonlinear programming techniques. The solutions for full nonlinear equations of motion are obtained where the integrals of the free Keplerian motion in three dimensions are utilized for coasting arcs. In order to limit the solution space, interior-point constraints are use...

متن کامل

Weighted orbital integrals

This is an expanded version of a survey talk given at the Conference on Representations of Real Reductive Lie Groups, June 4 to June 8, 2006, at the Snowbird Mountain Resort, Utah. We explain the definition of weighted orbital integrals and their Fourier transforms and report their known properties, leaving aside questions of endoscopy. We also announce some new results on those Fourier transfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999